Serverless Computation
with OpenLambda
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Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amnazZon > >
cloudfront recs Queries

AWS Lambda

claim: prior to the Lambda model, cloud compute
was neither elastic nor pay-as-you-go



What do we expect from a
cloud computing platform?



Big goal: sharing and isolation

App A App B

Physical Machine

want: multitenancy



Big goal: sharing and isolation

App A App B

Physical Machine

don’t want: crashes



Big goal: sharing and isolation

Physical Machine

don’t want: crashes



Big goal: sharing and isolation

App A App B

\@l

Physical Machine

don’t want: unfairness



Big goal: sharing and isolation

sensitive
data

Physical Machine

don’t want: leaks



Solution: Virtualization

namespaces and scheduling provide illusion of private resources



But what to virtualize?



Web application without virtualization
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1st generation: virtual machines

> Application Application
RPCs

Server Server

virtual H/'W
Hardware
advantages: problems:
e very flexible e interposition
 use any OS e s RAM used? (ballooning)

e redundancy (e.g., FS journal)
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2nd generation: containers

> Application Application
RPCs

Server Server

virtual OS

Hardware

advantages: problems:

e centralized view e |large deployment bundle
e init H/W once e server spinup



How should we virtualize the OS?



Operating systems have long
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Operating systems have long
provided process virtualization

scheduler

namespace
(memory)
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Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:

* file system mounts
network

host names

IPC queues
process IDs

user |Ds



OS virtualization

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:

file system mounts
network

host names

IPC queues
process IDs

user |Ds

New namespaces are collectively called “containers”

* lightweight, like virtual memory
 old idea rebranded (Plan 9 OS)



Containers should be fast and simple
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Theory and practice

Theory: containers are lightweight
* Just like starting a process!



Theory and practice

Theory: containers are lightweight
* Just like starting a process!

Practice: container startup is slow
* 25 second startup time (1]

1 . . Lo C
task startup latency (the time from job submission to a task running) is an

area that has received and continues to receive significant attention. It is
highly variable, with the median typically about 25 s. Package installation
takes about 80% of the total: one of the known bottlenecks is!

contention for the local diskwhere packages are written. ??

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
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Theory and practice

Theory: containers are lightweight
* Just like starting a process!

Practice: container startup is slow
* 25 second startup time (1]

Startup time matters

e flash crowds
 J|oad balance
* Interactive development

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf



http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

How to minimize startup latency?

Strategy: share as much as possible!
 (Containers only share H/W and OS

Servers
* Shouldn’t need to spin up

Runtimes

* |Interpreter (e.qg., Python) and packages
* Should already be in memory
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3rd generation: Lambdas

Application Application

virtual servers

Server+Runtime

Hardware

advantages: problems:

e fast startup * not flexible
e share memory



Outline

Containers vs. Lambdas
Application building
OpenlLambda: code overview

Plan projects: discussion



What is it like to develop
applications in containers?



A sad story in the cloud

Original app: EES (Engineering Equation Solver)
Desktop application, costs $600

terative equation solver for mechanical eng

Very compute intensive

Written in Fortran, very buggy
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A sad story in the cloud

Original app: EES (Engineering Equation Solver)
* Desktop application, costs $600

e |terative equation solver for mechanical eng

e \Very compute intensive

e Written in Fortran, very buggy

Our app: EESIER

 Web application, pay-as-you-go
 Handle compute load bursts with auto-scaling in Google AppEngine

2N

. -



Google AppEngine

Container-based cloud service

Programming model

« Write application as a web server
 handle RPC calls from JavaScript frontend (e.g., AJAX)

Autoscaling
e Start new server instances as dictated by specified rules



EESIER code

from flask Import Flask, request!

app = Flask(_name_ )!
Import  solver!

@app.route( '/ , methods=[ 'GET' , 'POST' ]! } RPC handler
of server
def handle ():!

equations = request.form.get( '‘eqs’ )! 10s of seconds
/I solve of compute



Experience

Plan: let students use EESIER instead of EES for H/W

 How to scale?
 How to minimize monetary cost?

Experiment: 10s of concurrent requests
e Starting new servers took minutes
 Not enough are started
« After a burst, you keep paying
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Experience

Plan: let students use EESIER instead of EES for H/W

 How to scale?
 How to minimize monetary cost?

Experiment: 10s of concurrent requests
e Starting new servers took minutes
 Not enough are started
« After a burst, you keep paying

Conclusion: AppEngine is

* Not elastic
 Not pay-as-you-go [ IS AWS Elastic Beanstalk better?




Elastic Beanstalk

Also container based
More sophisticated autoscaling rules

Experiment
 Maintain 100 concurrent requests
e Spin 200ms per request
 Run for 1 minute



Elastic Beanstalk
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v Scaling Trigger

Trigger measurement:
Trigger statistic:
Unit of measurement:

Measurement period
(minutes):

Breach duration
(minutes):

Upper threshold:

Upper breach scale

Lower threshold:

Lower breach scale
increment:

NetworkOut + | The measure name associated with the metric the trigger uses.

Average § The statistic that the trigger uses when fetching metrics statistics to examine. autoscal I ng
Bytes + The standard unit that the trigger uses when fetching metric statistics to examine. I S C O m p I eX
5 The period between metric evaluations.

5

The amount of time used to determine the existence of a breach. The service looks at data between the current time and the number of minutes specified
to see if a breach has occurred.

6000000 The upper limit for the metric. If the data points exceed the threshold for the period set as the breach duration, the trigger is activated.

1
The incremental amount to use when performing scaling activities when the upper threshold has been breached. Must be an integer, optionally followed
by a % sign.

2000000 The lower limit for the metric. If the data points are below this threshold for the period set as the breach duration, the trigger is activated.

-1
The incremental amount to use when performing scaling activities when the lower threshold has been breached. Must be an integer, optionally followed
by a % sign.



“Autoscaling” is very manual

New scheduled action

Name:
Must be from 1 to 255 characters in length.
Instances: Min Max
Minimum and Maximum number of instances to run.
Desired capacity: (Optional)

Desired number of instances to run.

Recurrent r

Start ime: | 2016-04-11T21:00:00Z M luTe
The time the action is scheduled to begin.

Current UTC time: 2016-04-11T720:44:24Z7 Cancel m



Why should it take minutes (or even seconds)
to execute scripts that are 1000s of LOC?



Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)
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Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)

Design principle: share as much as possible!

Share server pool between customers
 Any worker can execute any handler
 No spinup time
* Less switching

Encourage specific runtime (C#, Node.JS, Python)

e Minimize network copying
 (Code will be in resident in memory



Architecture

load balancers workers

Load Balancer

Load Balancer

handler store
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Load Balancer
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Architecture

load balancers workers

user <« Load Balancer

Load Balancer

Server

handler store




Lambda elasticity

Fast scaling should be easy

 Handlers are small, so copying is cheap
e Servers already running

Repeat ElasticBS experiment
 Maintain 100 concurrent requests
e Spin 200ms per request
 Run for 1 minute



Lambda elasticity
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Charging

Pay per function invocation
e actually pay-as-you-go
 no charge for idle time between calls

AWS pricing scheme
« charge actual time * memory_cap
 round up actual time  to nearest 100ms



Implementations

Public cloud

 Nov 2014: AWS Lambda
 Feb 2016: Google Cloud Functions (Alpha)
 Mar 2016: Azure Functions (Preview)

OpenlLambda

e In progress, to be released June 20th, 2016
e goal: enable academic research on Lambdas

2

Googlc Cloud Platform




Outline

Application building
OpenlLambda: code overview

Plan projects: discussion



Plan: everybody builds an application

Benefit 1: understanding

e |earn about Lambdas
e identify pain points

Benefit 2: evaluation

e turn applications into benchmark suite
 measure improvement (latency, scalability) every week this summer



Application ideas

 Better chat

* Blog tool (with comments)
 (Concert tickets
 Multiplayer game
 Nearby friends
 (Calendar (with email reminders)
e Stock alert cron job
 Autocomplete

 Simple search engine

« Document conversion

» (OCR service



Features to explore

* Authentication (e.qg., FB login)

 (Cookies

 WebSockets

DB triggers

e Different runtimes

e JavaScript event integration

 |[ambdas calling other Lambdas

 Platforms (OpenLambda, AWS, Google, Azure)



Tips

o JQuery, AJAX

e curl, Postman

e (Chrome tools

« CORS protocol (cross origin)
« others?



JavaScript

Suggestion: learn JQuery, AJAX:

data ={...};

$. ajax({
url: O...0 ,
type: "POST",
data: JSON.stringify(data),
contentType: "application/json"
success: function(data) {

}

error: function(xhr, ajaxOptions, thrownError) {

}
D;



POSTing with curl

Issue command from terminal

curl -X POST 172.17.0.15:8080/runLambda/mylambda -d '{}'



POSTing with Postman

Chrome extension

TR A AR Normal @ No erwironment » ' *
POSTMAN 280
Collections EJ" https.//4pcitxpssg.execute-api.us-east- 1.amazonaws.com/prod/kindle-vocab  POST - & URL params & Headers (1)
(A htps Hapcitxpssg. execule-api us-east-1 form-data  x-www-form-urlencoded  raw
.amazonaws.com/prod/kindle-vocab
name tyler Text : 0

5] https:igraph. facebook com/me ?access_tok
ensEAAHODWOLHYoBAJGLGBALhHWIZIBDAGPREMKL... Kon Tod o

(5] https:/igraph.facebook comAv2.6/debug_to
ken?input_token=EAAHODWOLHYoBAJgLgB4bhHW...

(5] htps:iNacebook comA2.6/debug_token?in m Preview  Add to collection
put_tokens=EAAHODWOLHYoBAJGLGB4bhHWI2IBDA. ..

-

Key Text

[ https /Macebook comiv2.6/debug_token?in Body B2 400 8ed Request [T 400 me
put_token={input-token)

- =
(5] tacebook.comiv2.6debug_tokenZinput_toke Pretty Raw Preview W  gF  JSON XML

n={input-oken} {("message”: "Could not parse request body into json: Unexpected character (\'-
\" (code 45)) 1in numeric value: expected digit (©-9) to follow minus sign, for
[:53] https:/4pcitxpssg.execute-apl.us-east-1 valid numeric value\n at [Source: [B@63albcla; line: 1, column: 3)%)

Aamazonaws. com/prod/kindle-vocab



Chrome

Init/Reset DB

Output

hello, world
Input

Comment

(® ] CElements Console Sources

Network Timeline Profiles Resources Security Audits : X
® © W T Vew = = Preserve log ' Disable cache  No throttling v
[ Filter HidedataURLs (1) XHR JS CSS Img Media Font Doc WS Manifest Other
| 100ms 200ms 300ms 400ms 500 ms 600ms 700 ms 800 ms 900 ms 1000 ms
Name Status Type Initiator Size Time Timeline - Start Time 600.00 ms 800.00ms 10054
| cihcteenzqvy 200 xhr jouery.min... 3128 152ms =i
| cihcteenzqvy 200 xhr Other 3608 96 ms [ —
L chcteenzqu (pending) xhr 'a&m.min.., 0B Pending 5 S [

3 requests | 672 B transferred




Chrome

Init/Reset DB

Output

hello, world
Input

Comment

[w ﬂ Elements Console Sources Network Timeline Profiles Resources Security Audits

¢ X
® © W YT \View = = Preservelog | Disable cache  No throttling v
[Filter HidedataURLs ([} XHR JS CSS Img Media Font Doc WS Manifest Other
100ms 200 ms 300 ms 400 ms S00ms 600 ms 700 ms 800 ms 900 ms 1000 ms
Name X Headers Preview Response Timing
CunenctLengun 5o
|| cihcleonzavy Content-Type: application/json; charset=UTF-8
|| cihcteenzqvy Host: 162.243.56.233:32780
Y Origin: http://162.243.56.233:82

Referer: http://162.243.56.233:82/
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWebKit/537.36 (KHTM
L, like Gecko) Chrome/50.0.2661.102 Safari/537.36

¥ Request Payload view parsed
3 requests | 672 B transferred {"op":"msg","msg" :"hello, world"}




Chrome

Init/Reset DB

Output

hello, world
Input

Comment

[x E] Elements Console Sources Network Timeline Profiles Resources Security Audits

® O W YT  Vew = = Preserve log Disable cache = No throttling v

[Finer HidedataURLs ) XHR JS CSS Img Media Font Doc WS Manifest Other

100 ms 200ms 300ms 400 ms 500 ms 600 ms 700 ms 800ms

Name X Headers Preview Response Timing

__| cihcteenzqvy 1 {"result": "insert 1464102290.644034 complete"}
|| cihcteenzqvy

__| cihcteenzqvy

3 requests | 672 B transferred

900 ms

X

1000 ms



CORS: cross-origin HTTP request
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browser
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CORS: cross-origin HTTP request

domain 1 domain 2

reg (from A)

/

browser

browser: is it OK for A content to request B content?



CORS: cross-origin HTTP request

domain 1 domain 2

reg (from A)

/

browser

browser: A must think so



CORS: cross-origin HTTP request

domain 1 domain 2

reg (from A)

/

browser

B must tell browser what domains are OK



CORS: cross-origin HTTP request

POST /runLambda/clhcteenzgvy HTTP/1.1
Host: 162.243.56.233:32780

Connection: keep-alive

Content-Length: 39

Accept: application/json, text/javascript, */*; g=0.01
Origin: http://162.243.56.233:82

User-Agent: Mozilla/5.0

Content-Type: application/json; charset=UTF-8
Referer: http://162.243.56.233:82/
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;g=0.8

request

HTTP/1.1 200 OK

Access-Control-Allow-Headers: Content-Type, Content-Range, Content-Description
Access-Control-Allow-Methods: GET, PUT, POST, DELETE, OPTIONS
Access-Control-Allow-Origin: *

Date: Tue, 24 May 2016 17:39:30 GMT

Content-Length: 98

Content-Type: text/plain; charset=utf-8

response



CORS: cross-origin HTTP request

domain 1 domain 2

browser

browser: B says it's OK



CORS: cross-origin HTTP request

Javascript Lambda

browser
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Plan projects: discussion



Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers

nginx: load balancer

lambda-generator: old script for generating Python Lambdas
node: container with worker, rethinkdb, and docker

util: scripts for starting/stopping local cluster

applications: OpenlLambda applications

testing: initial unit test environment



Source code

http

s://github.com/tylerharter/open-lambda

worker: Lambda server that executes handlers

nginx: load balancer

lambda-generator: old script for generating Python Lambdas
node: container with worker, rethinkdb, and docker

util: scripts for starting/stopping local cluster

applications: OpenlLambda applications

testing: initial unit test environment

Detalls

golang
receives web requests
starts Lambda handlers inside docker containers



Source code

https //github.com/tylerharter/open-lambda
worker: | ambda server that executes handlers

* |nginx: load balancer
 |lambda-generator: old script for generating Python Lambdas
 node: container with worker, rethinkdb, and docker
« util: scripts for starting/stopping local cluster
» applications: OpenlLambda applications
e testing: initial unit test environment

Detalls
e C++
e schedule requests across workers
* No real changes
» skeleton policy: modules/ngx_http_upstream_lambda_module.c



Source code

https //github.com/tylerharter/open-lambda

worker: Lambda server that executes handlers
nginx: load balancer

lambda-generator: old script for generating Python Lambdas

node: container with worker, rethinkdb, and docker
util: scripts for starting/stopping local cluster
applications: OpenlLambda applications

testing: initial unit test environment

Detalls

Python
Bundles Lambda function inside Docker container (Alpine)
To be replaced soon




Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers

* nginx: load balancer
 lambda-generator: old script for generating Python Lambdas
e |node: container with worker, rethinkdb, and docker
 ufil: scripts for starting/stopping local cluster
» applications: OpenlLambda applications
e testing: initial unit test environment

Details
e Docker container (name=lambda-node)
o Allows execution of cluster on one machine
 (One container simulates one machine
 (Contents: Docker, RethinkDB, Lambda worker
 Note: containers inside containers!



Source code

https //github.com/tylerharter/open-lambda

worker: Lambda server that executes handlers
nginx: load balancer

lambda-generator: old script for generating Python
node: container with worker, rethinkdb, and docker

_ambdas

util: scripts for starting/stopping local cluster

applications: OpenlLambda applications
testing: initial unit test environment

Detalls

Python

util/start-local-cluster.py spins up cluster
Each node described in util/cluster

Each node is a “lambda-node” container



Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers

* nginx: load balancer
 |lambda-generator: old script for generating Python Lambdas
 node: container with worker, rethinkdb, and docker
« util: scripts for starting/stopping local cluster
» [applications: OpenlLambda applications
e testing: initial unit test environment

Details
* Various applications and deployment scripts
 Looks at util/cluster to determine how to deploy
* (Generates config.json so JavaScript knows where to issue RPCs



Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers
* nginx: load balancer
 |lambda-generator: old script for generating Python Lambdas
 node: container with worker, rethinkdb, and docker
« util: scripts for starting/stopping local cluster
« applications: OpenLambda applications
e |testing: initial unit test environment

Detalls
e Python
 Pushes simple Lambdas to Docker registry (localhost:5000)
e (o unit tests in worker depend on these
o Justrun *make test” after starting a registry



Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

RethinkDB

registry container

Server
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nginx container lambda-node containers

RethinkDB
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Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

RethinkDB

registry container . i pause




Getting started

PROMPT> make

PROMPT> docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL
SIZE

lambda-node latest e3c7c9b3680e 4 minutes ago 376.8 MB
ubuntu trusty d4751aalc40a 2 weeks ago 188 MB

PROMPT> ./util/start-local-cluster.py
PROMPT> ./applications/pychat/setup.py

PROMPT> docker run -d -p 80:80 -v /root/git_co/open-lambda/applications/pychat/static:/
usr/share/nginx/html:ro nginx

PROMPT> docker run -d -p 5000:5000 registry:2

PROMPT> make test



Outline

Emerging compute models
Containers vs. Lambdas
Application building
OpenLambda: code overview

Plan projects: discussion



