
Serverless Computation
with OpenLambda

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute : dynamic logic
(e.g., Python)

Storage :
application data

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute : dynamic logic
(e.g., Python)

Storage :
application data

RPCs Queries

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute : dynamic logic
(e.g., Python)

Storage :
application data

compute is evolving

RPCs Queries

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute : dynamic logic
(e.g., Python)

Storage :
application data

compute is evolving

RPCs Queries

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute : dynamic logic
(e.g., Python)

Storage :
application data

RPCs Queries

AWS Lambda

compute is evolving

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute : dynamic logic
(e.g., Python)

Storage :
application data

claim: prior to the Lambda model, cloud compute
was neither elastic nor pay-as-you-go

RPCs Queries

AWS Lambda

What do we expect from a
cloud computing platform?

Big goal: sharing and isolation

App A App B

want: multitenancy

Physical Machine

Big goal: sharing and isolation

App A App B

don’t want: crashes

Physical Machine

Big goal: sharing and isolation

App A App B

don’t want: crashes

Physical Machine

Big goal: sharing and isolation

App A App B

don’t want: unfairness

Physical Machine

Big goal: sharing and isolation

App A App B

don’t want: leaks

Physical Machine

sensitive
data

Solution: Virtualization
namespaces and scheduling provide illusion of private resources

But what to virtualize?

Web application without virtualization

Hardware

OS

Server

Application
RPCs

Hardware

OS

Server

Application
RPCs

1st generation: virtual machines

virtual H/W

1st generation: virtual machines

Hardware

OS

Server

Application
RPCs

virtual H/W

OS

Server

Application

1st generation: virtual machines

Hardware

OS

Server

Application
RPCs

virtual H/W

OS

Server

Application

advantages:
• very flexible
• use any OS

problems:
• interposition
• is RAM used? (ballooning)
• redundancy (e.g., FS journal)

2nd generation: containers

Hardware

OS

Server

Application
RPCs

virtual OS

Server

Application

2nd generation: containers

Hardware

OS

Server

Application
RPCs

virtual OS

Server

Application

advantages:
• centralized view
• init H/W once

problems:
• large deployment bundle
• server spinup

How should we virtualize the OS?

Operating systems have long
provided process virtualization

Proc A Proc B

CPU RAM

Operating systems have long
provided process virtualization

Proc A Proc B

CPU RAM

scheduler
(CPU)

Operating systems have long
provided process virtualization

Proc A Proc B

CPU RAM

scheduler
(CPU)

PT PT
namespace
(memory)

OS virtualization

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:
• file system mounts
• network
• host names
• IPC queues
• process IDs
• user IDs

OS virtualization

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:
• file system mounts
• network
• host names
• IPC queues
• process IDs
• user IDs

New namespaces are collectively called “containers”
• lightweight, like virtual memory
• old idea rebranded (Plan 9 OS)

Containers should be fast and simple

Proc A Proc B

CPU RAM

PT PT

ports

Containers should be fast and simple

Proc A Proc B

CPU RAM

PT PT

ports

map map

100 200

80 80

Theory and practice

Theory: containers are lightweight
• just like starting a process!

Theory and practice

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight
• just like starting a process!

Practice: container startup is slow
• 25 second startup time [1]

task startup latency (the time from job submission to a task running) is an
area that has received and continues to receive significant attention. It is
highly variable, with the median typically about 25 s. Package installation
takes about 80% of the total: one of the known bottlenecks is!
contention for the local disk where packages are written. ”

“

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory and practice

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight
• just like starting a process!

Practice: container startup is slow
• 25 second startup time [1]

task startup latency (the time from job submission to a task running) is an
area that has received and continues to receive signiÞcant attention. It is
highly variable, with the median typically about 25 s. Package installation
takes about 80% of the total: one of the known bottlenecks is!
contention for the local disk where packages are written. ”

“

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory and practice

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight
• just like starting a process!

Practice: container startup is slow
• 25 second startup time [1]

Startup time matters
• flash crowds
• load balance
• interactive development

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

How to minimize startup latency?

Strategy: share as much as possible!
• Containers only share H/W and OS

Servers
• Shouldn’t need to spin up

Runtimes
• Interpreter (e.g., Python) and packages
• Should already be in memory

3rd generation: Lambdas

Hardware

OS

Server+Runtime

Application
RPCs virtual servers

Application

3rd generation: Lambdas

Hardware

OS

Server+Runtime

Application
RPCs virtual servers

Application

serverless computing

3rd generation: Lambdas

Hardware

OS

Server+Runtime

Application
RPCs virtual servers

Application

advantages:
• fast startup
• share memory

problems:
• not flexible

Outline

Emerging compute models

Containers vs. Lambdas

Application building

OpenLambda: code overview

Plan projects: discussion

What is it like to develop
applications in containers?

Original app: EES (Engineering Equation Solver)
• Desktop application, costs $600
• Iterative equation solver for mechanical eng
• Very compute intensive
• Written in Fortran, very buggy

A sad story in the cloud

Original app: EES (Engineering Equation Solver)
• Desktop application, costs $600
• Iterative equation solver for mechanical eng
• Very compute intensive
• Written in Fortran, very buggy

Our app: EESIER
• Web application, pay-as-you-go
• Handle compute load bursts with auto-scaling in Google AppEngine

A sad story in the cloud

Google AppEngine

Container-based cloud service

Programming model
• Write application as a web server
• handle RPC calls from JavaScript frontend (e.g., AJAX)

Autoscaling
• Start new server instances as dictated by specified rules

EESIER code

from flask import Flask, request!

app = Flask(__name__)!

import solver!

!

@app.route('/' , methods=['GET' , 'POST'])!

def handle ():!

 equations = request.form.get('eqs')!

 // solve

...

RPC handler
of server

10s of seconds
of compute

Experience

Plan: let students use EESIER instead of EES for H/W
• How to scale?
• How to minimize monetary cost?

Experiment: 10s of concurrent requests
• Starting new servers took minutes
• Not enough are started
• After a burst, you keep paying

Experience

Plan: let students use EESIER instead of EES for H/W
• How to scale?
• How to minimize monetary cost?

Experiment: 10s of concurrent requests
• Starting new servers took minutes
• Not enough are started
• After a burst, you keep paying

Conclusion: AppEngine is
• Not elastic
• Not pay-as-you-go

Experience

Plan: let students use EESIER instead of EES for H/W
• How to scale?
• How to minimize monetary cost?

Experiment: 10s of concurrent requests
• Starting new servers took minutes
• Not enough are started
• After a burst, you keep paying

Conclusion: AppEngine is
• Not elastic
• Not pay-as-you-go Is AWS Elastic Beanstalk better?

Elastic Beanstalk

Also container based

More sophisticated autoscaling rules

Experiment
• Maintain 100 concurrent requests
• Spin 200ms per request
• Run for 1 minute

Elastic Beanstalk

Elastic B***s****

autoscaling
is complex

“Autoscaling” is very manual

Why should it take minutes (or even seconds)
to execute scripts that are 1000s of LOC?

Lambda model

Run user handlers in response to events
• web requests (RPC handlers)
• database updates (triggers)
• scheduled events (cron jobs)

Lambda model

Run user handlers in response to events
• web requests (RPC handlers)
• database updates (triggers)
• scheduled events (cron jobs)

Design principle: share as much as possible!

Lambda model

Run user handlers in response to events
• web requests (RPC handlers)
• database updates (triggers)
• scheduled events (cron jobs)

Design principle: share as much as possible!

Share server pool between customers
• Any worker can execute any handler
• No spinup time
• Less switching

Encourage specific runtime (C#, Node.JS, Python)
• Minimize network copying
• Code will be in resident in memory

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

developer
upload
code

H

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

H

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

Hsmall

large

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

H

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

H

user
RPC

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

H

user
RPC

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

H

user
RPC

H

Architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

H

user
RPC

H

Lambda elasticity

Fast scaling should be easy
• Handlers are small, so copying is cheap
• Servers already running

Repeat ElasticBS experiment
• Maintain 100 concurrent requests
• Spin 200ms per request
• Run for 1 minute

Lambda elasticity

Charging

Pay per function invocation
• actually pay-as-you-go
• no charge for idle time between calls

AWS pricing scheme
• charge actual_time * memory_cap
• round up actual_time to nearest 100ms

Implementations

Public cloud
• Nov 2014: AWS Lambda
• Feb 2016: Google Cloud Functions (Alpha)
• Mar 2016: Azure Functions (Preview)

OpenLambda
• in progress, to be released June 20th, 2016
• goal: enable academic research on Lambdas

Outline

Emerging compute models

Containers vs. Lambdas

Application building

OpenLambda: code overview

Plan projects: discussion

Plan: everybody builds an application

Benefit 1: understanding
• learn about Lambdas
• identify pain points

Benefit 2: evaluation
• turn applications into benchmark suite
• measure improvement (latency, scalability) every week this summer

Application ideas

• Better chat
• Blog tool (with comments)
• Concert tickets
• Multiplayer game
• Nearby friends
• Calendar (with email reminders)
• Stock alert cron job
• Autocomplete
• Simple search engine
• Document conversion
• OCR service
• …

Features to explore

• Authentication (e.g., FB login)
• Cookies
• WebSockets
• DB triggers
• Different runtimes
• JavaScript event integration
• Lambdas calling other Lambdas
• Platforms (OpenLambda, AWS, Google, Azure)

Tips

• JQuery, AJAX
• curl, Postman
• Chrome tools
• CORS protocol (cross origin)
• others?

JavaScript

Suggestion: learn JQuery, AJAX:

data = {...};
$. ajax({
 url: Ò...Ó ,
 type: "POST",
 data: JSON.stringify(data),
 contentType: "application/json" ,
 success: function(data) {
 ...
 } ,
 error: function(xhr, ajaxOptions, thrownError) {
 ...
 }
});

POSTing with curl

Issue command from terminal

curl -X POST 172.17.0.15:8080/runLambda/mylambda -d '{}'

POSTing with Postman

Chrome extension

Chrome

Chrome

Chrome

CORS: cross-origin HTTP request

A

domain 1

B

domain 2

browser

CORS: cross-origin HTTP request

A

domain 1

B

domain 2

browser

A

CORS: cross-origin HTTP request

A

domain 1

B

domain 2

browser

A

req (from A)

browser: is it OK for A content to request B content?

CORS: cross-origin HTTP request

A

domain 1

B

domain 2

browser

A

browser: A must think so

req (from A)

CORS: cross-origin HTTP request

A

domain 1

B

domain 2

browser

A

B must tell browser what domains are OK

req (from A)

CORS: cross-origin HTTP request
POST /runLambda/clhcteenzqvy HTTP/1.1
Host: 162.243.56.233:32780
Connection: keep-alive
Content-Length: 39
Accept: application/json, text/javascript, */*; q=0.01
Origin: http://162.243.56.233:82
User-Agent: Mozilla/5.0
Content-Type: application/json; charset=UTF-8
Referer: http://162.243.56.233:82/
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8

HTTP/1.1 200 OK
Access-Control-Allow-Headers: Content-Type, Content-Range, Content-Description
Access-Control-Allow-Methods: GET, PUT, POST, DELETE, OPTIONS
Access-Control-Allow-Origin: *
Date: Tue, 24 May 2016 17:39:30 GMT
Content-Length: 98
Content-Type: text/plain; charset=utf-8

re
qu

es
t

re
sp

on
se

CORS: cross-origin HTTP request

A

domain 1

B

domain 2

browser

A

browser: B says it’s OK

B

CORS: cross-origin HTTP request

A

JavaScript

B

Lambda

browser

A

Outline

Emerging compute models

Containers vs. Lambdas

Application building

OpenLambda: code overview

Plan projects: discussion

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• golang
• receives web requests
• starts Lambda handlers inside docker containers

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• C++
• schedule requests across workers
• no real changes
• skeleton policy: modules/ngx_http_upstream_lambda_module.c

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• Python
• Bundles Lambda function inside Docker container (Alpine)
• To be replaced soon

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• Docker container (name=lambda-node)
• Allows execution of cluster on one machine
• One container simulates one machine
• Contents: Docker, RethinkDB, Lambda worker
• Note: containers inside containers!

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• Python
• util/start-local-cluster.py spins up cluster
• Each node described in util/cluster
• Each node is a “lambda-node” container

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• Various applications and deployment scripts
• Looks at util/cluster to determine how to deploy
• Generates config.json so JavaScript knows where to issue RPCs

Source code

https://github.com/tylerharter/open-lambda
• worker: Lambda server that executes handlers
• nginx: load balancer
• lambda-generator: old script for generating Python Lambdas
• node: container with worker, rethinkdb, and docker
• util: scripts for starting/stopping local cluster
• applications: OpenLambda applications
• testing: initial unit test environment

Details
• Python
• Pushes simple Lambdas to Docker registry (localhost:5000)
• Go unit tests in worker depend on these
• Just run “make test” after starting a registry

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

developer

L

J

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

RPC

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

RPC

pull

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

RPC

run

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

RPC
query

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

RPC

resp

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

RPC resp

Architecture (1 phys machine)

Server

Docker

lambda-node containers

registry container

RethinkDB

Server

Docker

RethinkDB

nginx container

L

J

browser

J

pause

Getting started
PROMPT> make
...

PROMPT> docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL
SIZE
lambda-node latest e3c7c9b3680e 4 minutes ago 376.8 MB
ubuntu trusty d4751aa1c40a 2 weeks ago 188 MB

PROMPT> ./util/start-local-cluster.py
...

PROMPT> ./applications/pychat/setup.py
...

PROMPT> docker run -d -p 80:80 -v /root/git_co/open-lambda/applications/pychat/static:/
usr/share/nginx/html:ro nginx
...

PROMPT> docker run -d -p 5000:5000 registry:2
...

PROMPT> make test
...

Outline

Emerging compute models

Containers vs. Lambdas

Application building

OpenLambda: code overview

Plan projects: discussion

