Serverless Computation
with OpenLambda

Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amazon
cloudfront

Amazon EC2

Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amazon >
cloudfront recs

>
Queries

Amazon EC2

Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amazon >
cloudfront recs

>
Queries

Amazon EC2

compute Is evolving

Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amazon >
cloudfront recs

>

Elastic i
Beanstalk Queries

compute Is evolving

Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amnazZon > >
cloudfront recs Queries

AWS Lambda

compute Is evolving

Web development in the cloud

CDN: static content Compute : dynamic logic Storage .
(e.g., JavaScript) (e.qg., Python) application data

amnazZon > >
cloudfront recs Queries

AWS Lambda

claim: prior to the Lambda model, cloud compute
was neither elastic nor pay-as-you-go

What do we expect from a
cloud computing platform?

Big goal: sharing and isolation

App A App B

Physical Machine

want: multitenancy

Big goal: sharing and isolation

App A App B

Physical Machine

don’t want: crashes

Big goal: sharing and isolation

Physical Machine

don’t want: crashes

Big goal: sharing and isolation

App A App B

\@l

Physical Machine

don’t want: unfairness

Big goal: sharing and isolation

sensitive
data

Physical Machine

don’t want: leaks

Solution: Virtualization

namespaces and scheduling provide illusion of private resources

But what to virtualize?

Web application without virtualization

> Application
RPCs

Server

Hardware

1st generation: virtual machines

> Application
RPCs

Server

virtual H/'W

Hardware

1st generation: virtual machines

> Application Application
RPCs

Server Server

virtual H/'W

Hardware

1st generation: virtual machines

> Application Application
RPCs

Server Server

virtual H/'W
Hardware
advantages: problems:
e very flexible e interposition
 use any OS e s RAM used? (ballooning)

e redundancy (e.g., FS journal)

2nd generation: containers

> Application

Application

RPCs

Server Server

virtual OS

Hardware

2nd generation: containers

> Application Application
RPCs

Server Server

virtual OS

Hardware

advantages: problems:

e centralized view e |large deployment bundle
e init H/W once e server spinup

How should we virtualize the OS?

Operating systems have long
provided process virtualization

CPU RAM

Operating systems have long
provided process virtualization

scheduler

\(CPU)

CPU RAM

Operating systems have long
provided process virtualization

scheduler

namespace
(memory)

\(CPU) bT

CPU RAM

OS virtualization

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:

* file system mounts
network

host names

IPC queues
process IDs

user |Ds

OS virtualization

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:

file system mounts
network

host names

IPC queues
process IDs

user |Ds

New namespaces are collectively called “containers”

* lightweight, like virtual memory
 old idea rebranded (Plan 9 OS)

Containers should be fast and simple

PT PT

CPU RAM DOrts

Containers should be fast and simple

Iy sh\ao

PT PT map map

100\ l 200

CPU RAM DOrts

Theory and practice

Theory: containers are lightweight
* Just like starting a process!

Theory and practice

Theory: containers are lightweight
* Just like starting a process!

Practice: container startup is slow
* 25 second startup time (1]

1 . . Lo C
task startup latency (the time from job submission to a task running) is an

area that has received and continues to receive significant attention. It is
highly variable, with the median typically about 25 s. Package installation
takes about 80% of the total: one of the known bottlenecks is!

contention for the local diskwhere packages are written. ??

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory and practice

Theory: containers are lightweight
* Just like starting a process!

Practice: container startup is slow
* 25 second startup time (1]

1 . . Lo C
task startup latency (the time from job submission to a task running) is an

area that has received and continues to receive signipcant attentionlt is
highly variable, with the median typically about 25 s. Package installation
takes about 80% of the total: one of the known bottlenecks is!

contention for the local diskwhere packages are written. ??

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory and practice

Theory: containers are lightweight
* Just like starting a process!

Practice: container startup is slow
* 25 second startup time (1]

Startup time matters

e flash crowds
 J|oad balance
* Interactive development

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

How to minimize startup latency?

Strategy: share as much as possible!
 (Containers only share H/W and OS

Servers
* Shouldn’t need to spin up

Runtimes

* |Interpreter (e.qg., Python) and packages
* Should already be in memory

3rd generation: Lambdas

Application Application

virtual servers

Server+Runtime

Hardware

3rd generation: Lambdas

Application Application

virtual servers

Server+Runtime

Hardware

serverless computing

3rd generation: Lambdas

Application Application

virtual servers

Server+Runtime

Hardware

advantages: problems:

e fast startup * not flexible
e share memory

Outline

Containers vs. Lambdas
Application building
OpenlLambda: code overview

Plan projects: discussion

What is it like to develop
applications in containers?

A sad story in the cloud

Original app: EES (Engineering Equation Solver)
Desktop application, costs $600

terative equation solver for mechanical eng

Very compute intensive

Written in Fortran, very buggy

2N
(-

A sad story in the cloud

Original app: EES (Engineering Equation Solver)
* Desktop application, costs $600

e |terative equation solver for mechanical eng

e \Very compute intensive

e Written in Fortran, very buggy

Our app: EESIER

 Web application, pay-as-you-go
 Handle compute load bursts with auto-scaling in Google AppEngine

2N

. -

Google AppEngine

Container-based cloud service

Programming model

« Write application as a web server
 handle RPC calls from JavaScript frontend (e.g., AJAX)

Autoscaling
e Start new server instances as dictated by specified rules

EESIER code

from flask Import Flask, request!

app = Flask(_name_)!
Import solver!

@app.route('/ , methods=['GET' , 'POST']! } RPC handler
of server
def handle ():!

equations = request.form.get('‘eqs’)! 10s of seconds
/I solve of compute

Experience

Plan: let students use EESIER instead of EES for H/W

 How to scale?
 How to minimize monetary cost?

Experiment: 10s of concurrent requests
e Starting new servers took minutes
 Not enough are started
« After a burst, you keep paying

Experience

Plan: let students use EESIER instead of EES for H/W

 How to scale?
 How to minimize monetary cost?

Experiment: 10s of concurrent requests
e Starting new servers took minutes
 Not enough are started
« After a burst, you keep paying

Conclusion: AppEngine is

 Not elastic
 Not pay-as-you-go

Experience

Plan: let students use EESIER instead of EES for H/W

 How to scale?
 How to minimize monetary cost?

Experiment: 10s of concurrent requests
e Starting new servers took minutes
 Not enough are started
« After a burst, you keep paying

Conclusion: AppEngine is

* Not elastic
 Not pay-as-you-go [IS AWS Elastic Beanstalk better?

Elastic Beanstalk

Also container based
More sophisticated autoscaling rules

Experiment
 Maintain 100 concurrent requests
e Spin 200ms per request
 Run for 1 minute

Elastic Beanstalk

o 100% - Elastic BS

&’ 80% -

= 60%-

g 40%-

O -

qh) 20% /

al OO/O ——T T T T T I
N n n 7)) n n n
O - (Q\ O - - -
P ~— Al Lo

Latency

Elastic B***s****

» 100% - Elastic BS

S 80%-

m O

(- O/

O 00% 100*200ms

GC) 40% -

O -

qL) 200/0 /

O Oo/o —T T | T T |
7)) 7)) 7)) 7)) 7)) 7)) 7))
0 — (Q\| O o o o
d \ A 0

v Scaling Trigger

Trigger measurement:
Trigger statistic:
Unit of measurement:

Measurement period
(minutes):

Breach duration
(minutes):

Upper threshold:

Upper breach scale

Lower threshold:

Lower breach scale
increment:

NetworkOut + | The measure name associated with the metric the trigger uses.

Average § The statistic that the trigger uses when fetching metrics statistics to examine. autoscal I ng
Bytes + The standard unit that the trigger uses when fetching metric statistics to examine. I S C O m p I eX
5 The period between metric evaluations.

5

The amount of time used to determine the existence of a breach. The service looks at data between the current time and the number of minutes specified
to see if a breach has occurred.

6000000 The upper limit for the metric. If the data points exceed the threshold for the period set as the breach duration, the trigger is activated.

1
The incremental amount to use when performing scaling activities when the upper threshold has been breached. Must be an integer, optionally followed
by a % sign.

2000000 The lower limit for the metric. If the data points are below this threshold for the period set as the breach duration, the trigger is activated.

-1
The incremental amount to use when performing scaling activities when the lower threshold has been breached. Must be an integer, optionally followed
by a % sign.

“Autoscaling” is very manual

New scheduled action

Name:
Must be from 1 to 255 characters in length.
Instances: Min Max
Minimum and Maximum number of instances to run.
Desired capacity: (Optional)

Desired number of instances to run.

Recurrent r

Start ime: | 2016-04-11T21:00:00Z M luTe
The time the action is scheduled to begin.

Current UTC time: 2016-04-11T720:44:24Z7 Cancel m

Why should it take minutes (or even seconds)
to execute scripts that are 1000s of LOC?

Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)

Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)

Design principle: share as much as possible!

Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)

Design principle: share as much as possible!

Share server pool between customers
 Any worker can execute any handler
 No spinup time
* Less switching

Encourage specific runtime (C#, Node.JS, Python)

e Minimize network copying
 (Code will be in resident in memory

Architecture

load balancers workers

Load Balancer

Load Balancer

handler store

Architecture

load balancers workers

Load Balancer

Load Balancer

handler store

developer >
upload
code

Architecture

load balancers workers

Load Balancer

Load Balancer

handler store

Architecture

load balancers workers

Load Balancer

Load Balancer large <

—
EEEN

handler store

small {

Architecture

load balancers workers

Load Balancer

Load Balancer

handler store

Architecture

load balancers workers

user 4 Load Balancer

RPC -

Load Balancer

handler store

Architecture

load balancers workers

user 4 Load Balancer
RPC \

Load Balancer

handler store

Architecture

load balancers workers

user 4 Load Balancer
RPC \

Load Balancer

handler store

Architecture

load balancers workers

user <« Load Balancer

Load Balancer

Server

handler store

Lambda elasticity

Fast scaling should be easy

 Handlers are small, so copying is cheap
e Servers already running

Repeat ElasticBS experiment
 Maintain 100 concurrent requests
e Spin 200ms per request
 Run for 1 minute

Lambda elasticity

Percent of Regs

100%] AWS Lambda Elastic BS

80%

oU% 1 100*200ms

40%

200/0 /

Oo/o | | I | |

) n ") n) 7 %)
To! - Al To! o o -,
d \ QA L0

Latency

Charging

Pay per function invocation
e actually pay-as-you-go
 no charge for idle time between calls

AWS pricing scheme
« charge actual time * memory_cap
 round up actual time to nearest 100ms

Implementations

Public cloud

 Nov 2014: AWS Lambda
 Feb 2016: Google Cloud Functions (Alpha)
 Mar 2016: Azure Functions (Preview)

OpenlLambda

e In progress, to be released June 20th, 2016
e goal: enable academic research on Lambdas

2

Googlc Cloud Platform

Outline

Application building
OpenlLambda: code overview

Plan projects: discussion

Plan: everybody builds an application

Benefit 1: understanding

e |earn about Lambdas
e identify pain points

Benefit 2: evaluation

e turn applications into benchmark suite
 measure improvement (latency, scalability) every week this summer

Application ideas

 Better chat

* Blog tool (with comments)
 (Concert tickets
 Multiplayer game
 Nearby friends
 (Calendar (with email reminders)
e Stock alert cron job
 Autocomplete

 Simple search engine

« Document conversion

» (OCR service

Features to explore

* Authentication (e.qg., FB login)

 (Cookies

 WebSockets

DB triggers

e Different runtimes

e JavaScript event integration

 |[ambdas calling other Lambdas

 Platforms (OpenLambda, AWS, Google, Azure)

Tips

o JQuery, AJAX

e curl, Postman

e (Chrome tools

« CORS protocol (cross origin)
« others?

JavaScript

Suggestion: learn JQuery, AJAX:

data ={...};

$. ajax({
url: O...0 ,
type: "POST",
data: JSON.stringify(data),
contentType: "application/json"
success: function(data) {

}

error: function(xhr, ajaxOptions, thrownError) {

}
D;

POSTing with curl

Issue command from terminal

curl -X POST 172.17.0.15:8080/runLambda/mylambda -d '{}'

POSTing with Postman

Chrome extension

TR A AR Normal @ No erwironment » ' *
POSTMAN 280
Collections EJ" https.//4pcitxpssg.execute-api.us-east- 1.amazonaws.com/prod/kindle-vocab POST - & URL params & Headers (1)
(A htps Hapcitxpssg. execule-api us-east-1 form-data x-www-form-urlencoded raw
.amazonaws.com/prod/kindle-vocab
name tyler Text : 0

5] https:igraph. facebook com/me ?access_tok
ensEAAHODWOLHYoBAJGLGBALhHWIZIBDAGPREMKL... Kon Tod o

(5] https:/igraph.facebook comAv2.6/debug_to
ken?input_token=EAAHODWOLHYoBAJgLgB4bhHW...

(5] htps:iNacebook comA2.6/debug_token?in m Preview Add to collection
put_tokens=EAAHODWOLHYoBAJGLGB4bhHWI2IBDA. ..

-

Key Text

[https /Macebook comiv2.6/debug_token?in Body B2 400 8ed Request [T 400 me
put_token={input-token)

- =
(5] tacebook.comiv2.6debug_tokenZinput_toke Pretty Raw Preview W gF JSON XML

n={input-oken} {("message”: "Could not parse request body into json: Unexpected character (\'-
\" (code 45)) 1in numeric value: expected digit (©-9) to follow minus sign, for
[:53] https:/4pcitxpssg.execute-apl.us-east-1 valid numeric value\n at [Source: [B@63albcla; line: 1, column: 3)%)

Aamazonaws. com/prod/kindle-vocab

Chrome

Init/Reset DB

Output

hello, world
Input

Comment

(®] CElements Console Sources

Network Timeline Profiles Resources Security Audits : X
® © W T Vew = = Preserve log ' Disable cache No throttling v
[Filter HidedataURLs (1) XHR JS CSS Img Media Font Doc WS Manifest Other
| 100ms 200ms 300ms 400ms 500 ms 600ms 700 ms 800 ms 900 ms 1000 ms
Name Status Type Initiator Size Time Timeline - Start Time 600.00 ms 800.00ms 10054
| cihcteenzqvy 200 xhr jouery.min... 3128 152ms =i
| cihcteenzqvy 200 xhr Other 3608 96 ms [—
L chcteenzqu (pending) xhr 'a&m.min.., 0B Pending 5 S [

3 requests | 672 B transferred

Chrome

Init/Reset DB

Output

hello, world
Input

Comment

[w ﬂ Elements Console Sources Network Timeline Profiles Resources Security Audits

¢ X
® © W YT \View = = Preservelog | Disable cache No throttling v
[Filter HidedataURLs ([} XHR JS CSS Img Media Font Doc WS Manifest Other
100ms 200 ms 300 ms 400 ms S00ms 600 ms 700 ms 800 ms 900 ms 1000 ms
Name X Headers Preview Response Timing
CunenctLengun 5o
|| cihcleonzavy Content-Type: application/json; charset=UTF-8
|| cihcteenzqvy Host: 162.243.56.233:32780
Y Origin: http://162.243.56.233:82

Referer: http://162.243.56.233:82/
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWebKit/537.36 (KHTM
L, like Gecko) Chrome/50.0.2661.102 Safari/537.36

¥ Request Payload view parsed
3 requests | 672 B transferred {"op":"msg","msg" :"hello, world"}

Chrome

Init/Reset DB

Output

hello, world
Input

Comment

[x E] Elements Console Sources Network Timeline Profiles Resources Security Audits

® O W YT Vew = = Preserve log Disable cache = No throttling v

[Finer HidedataURLs) XHR JS CSS Img Media Font Doc WS Manifest Other

100 ms 200ms 300ms 400 ms 500 ms 600 ms 700 ms 800ms

Name X Headers Preview Response Timing

__| cihcteenzqvy 1 {"result": "insert 1464102290.644034 complete"}
|| cihcteenzqvy

__| cihcteenzqvy

3 requests | 672 B transferred

900 ms

X

1000 ms

CORS: cross-origin HTTP request

domain 1 domain 2

browser

CORS: cross-origin HTTP request

domain 1 domain 2

N

browser

CORS: cross-origin HTTP request

domain 1 domain 2

reg (from A)

/

browser

browser: is it OK for A content to request B content?

CORS: cross-origin HTTP request

domain 1 domain 2

reg (from A)

/

browser

browser: A must think so

CORS: cross-origin HTTP request

domain 1 domain 2

reg (from A)

/

browser

B must tell browser what domains are OK

CORS: cross-origin HTTP request

POST /runLambda/clhcteenzgvy HTTP/1.1
Host: 162.243.56.233:32780

Connection: keep-alive

Content-Length: 39

Accept: application/json, text/javascript, */*; g=0.01
Origin: http://162.243.56.233:82

User-Agent: Mozilla/5.0

Content-Type: application/json; charset=UTF-8
Referer: http://162.243.56.233:82/
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;g=0.8

request

HTTP/1.1 200 OK

Access-Control-Allow-Headers: Content-Type, Content-Range, Content-Description
Access-Control-Allow-Methods: GET, PUT, POST, DELETE, OPTIONS
Access-Control-Allow-Origin: *

Date: Tue, 24 May 2016 17:39:30 GMT

Content-Length: 98

Content-Type: text/plain; charset=utf-8

response

CORS: cross-origin HTTP request

domain 1 domain 2

browser

browser: B says it's OK

CORS: cross-origin HTTP request

Javascript Lambda

browser

Outline

OpenLambda: code overview

Plan projects: discussion

Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers

nginx: load balancer

lambda-generator: old script for generating Python Lambdas
node: container with worker, rethinkdb, and docker

util: scripts for starting/stopping local cluster

applications: OpenlLambda applications

testing: initial unit test environment

Source code

http

s://github.com/tylerharter/open-lambda

worker: Lambda server that executes handlers

nginx: load balancer

lambda-generator: old script for generating Python Lambdas
node: container with worker, rethinkdb, and docker

util: scripts for starting/stopping local cluster

applications: OpenlLambda applications

testing: initial unit test environment

Detalls

golang
receives web requests
starts Lambda handlers inside docker containers

Source code

https //github.com/tylerharter/open-lambda
worker: | ambda server that executes handlers

* |nginx: load balancer
 |lambda-generator: old script for generating Python Lambdas
 node: container with worker, rethinkdb, and docker
« util: scripts for starting/stopping local cluster
» applications: OpenlLambda applications
e testing: initial unit test environment

Detalls
e C++
e schedule requests across workers
* No real changes
» skeleton policy: modules/ngx_http_upstream_lambda_module.c

Source code

https //github.com/tylerharter/open-lambda

worker: Lambda server that executes handlers
nginx: load balancer

lambda-generator: old script for generating Python Lambdas

node: container with worker, rethinkdb, and docker
util: scripts for starting/stopping local cluster
applications: OpenlLambda applications

testing: initial unit test environment

Detalls

Python
Bundles Lambda function inside Docker container (Alpine)
To be replaced soon

Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers

* nginx: load balancer
 lambda-generator: old script for generating Python Lambdas
e |node: container with worker, rethinkdb, and docker
 ufil: scripts for starting/stopping local cluster
» applications: OpenlLambda applications
e testing: initial unit test environment

Details
e Docker container (name=lambda-node)
o Allows execution of cluster on one machine
 (One container simulates one machine
 (Contents: Docker, RethinkDB, Lambda worker
 Note: containers inside containers!

Source code

https //github.com/tylerharter/open-lambda

worker: Lambda server that executes handlers
nginx: load balancer

lambda-generator: old script for generating Python
node: container with worker, rethinkdb, and docker

_ambdas

util: scripts for starting/stopping local cluster

applications: OpenlLambda applications
testing: initial unit test environment

Detalls

Python

util/start-local-cluster.py spins up cluster
Each node described in util/cluster

Each node is a “lambda-node” container

Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers

* nginx: load balancer
 |lambda-generator: old script for generating Python Lambdas
 node: container with worker, rethinkdb, and docker
« util: scripts for starting/stopping local cluster
» [applications: OpenlLambda applications
e testing: initial unit test environment

Details
* Various applications and deployment scripts
 Looks at util/cluster to determine how to deploy
* (Generates config.json so JavaScript knows where to issue RPCs

Source code

https //github.com/tylerharter/open-lambda
worker: Lambda server that executes handlers
* nginx: load balancer
 |lambda-generator: old script for generating Python Lambdas
 node: container with worker, rethinkdb, and docker
« util: scripts for starting/stopping local cluster
« applications: OpenLambda applications
e |testing: initial unit test environment

Detalls
e Python
 Pushes simple Lambdas to Docker registry (localhost:5000)
e (o unit tests in worker depend on these
o Justrun *make test” after starting a registry

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

RethinkDB

registry container

Server

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

Vd

/

developer

RethinkDB
registry container

NE

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

RethinkDB

registry container

Server

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

RethinkDB

registry container

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

RethinkDB

registry container

Architecture (1 phys machine)

nginx container

browser

M-

registry container

RPC

lambda-node containers

RethinkDB

RethinkDB

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

M-

RPC RethinkDB

registry container

\\

oull

Y/

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

M-

RPC RethinkDB

registry container

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

M-

RPC RethinkDB
query

registry container

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

M-

RPC RethinkDB

reqistry container
gistry eS|

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

M-

RPC resp RethinkDB

registry container

Architecture (1 phys machine)

nginx container lambda-node containers

RethinkDB

browser

RethinkDB

registry container . i pause

Getting started

PROMPT> make

PROMPT> docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL
SIZE

lambda-node latest e3c7c9b3680e 4 minutes ago 376.8 MB
ubuntu trusty d4751aalc40a 2 weeks ago 188 MB

PROMPT> ./util/start-local-cluster.py
PROMPT> ./applications/pychat/setup.py

PROMPT> docker run -d -p 80:80 -v /root/git_co/open-lambda/applications/pychat/static:/
usr/share/nginx/html:ro nginx

PROMPT> docker run -d -p 5000:5000 registry:2

PROMPT> make test

Outline

Emerging compute models
Containers vs. Lambdas
Application building
OpenLambda: code overview

Plan projects: discussion

